Sélection d’articles récents

Nous vous avons à nouveau compilé une petite sélection d’articles scientifiques publiés ces derniers mois:

1. Hernández-Brito D., Caret M., Popa-Lisseanu A.G., Ibáñez C. & Tella J.L. (2014). Crowding in the city: Losing and winning competitors of an invasive bird. PLoS ONE9(6): e100593 [lien vers l’article].

2. Haarsma A.-J. & van der Graaf C. (2009). Halsbandparkieten, een bredeiging voor Rosse vleermuizen? De Levende Natuur 114: 10–13 [lien vers l’article].

3. Bas, Y., Bas, D. & Julien, J.-F. (2017). Tadarida: A toolbox for animal detection on acoustic recordings. Journal of Open Research Software [lien vers l’article].

4. López-Baucells, A., Rocha, R. & Fernández-Llamazares, Á. (2017). When bats go viral: negative framings in virological research imperil bat conservation. Mammal Review, in press [lien vers l’article].

5. O’Mara, M.T., Wikelski, M., Voigt, C.C., Ter Maat, A., Pollock, H.S., Burness, G., Desantis, L.M. & Dechmann, D.K.N. (2017). Cyclic bouts of extreme bradycardia counteract the high metabolism of frugivorous bats. eLife, 6, e26686 [lien vers l’article].

6. Roemer, C., Disca, T., Coulon, A. & Bas, Y. (2017). Bat flight height monitored from wind masts predicts mortality risk at wind farms. Biological Conservation, 215, 116-122 [lien vers l’article].

7. Greif, S., Zsebők, S., Schmieder, D. & Siemers, B.M. (2017). Acoustic mirrors as sensory traps for bats. Science, 357, 1045-1047 [lien vers le résumé].

8. Fleischer, T., Gampe, J., Scheuerlein, A. & Kerth, G. (2017). Rare catastrophic events drive population dynamics in a bat species with negligible senescence. Scientific Reports, 7, 7370 [lien vers l’article].

9. Pettit, J.L. & O’Keefe, J.M. (2017). Day of year, temperature, wind, and precipitation predict timing of bat migration. Journal of Mammalogy, in press [lien vers le résumé].

10. Jan, P.-L., Farcy, O., Boireau, J., Le Texier, E., Baudouin, A., Le Gouar, P., Puechmaille, S.J. & Petit, E.J. (2017). Which temporal resolution to consider when investigating the impact of climatic data on population dynamics? The case of the lesser horseshoe bat (Rhinolophus hipposideros). Oecologia, 184, 749-761 [lien vers le résumé].

11. López-Baucells, A., Puig-Montserrat, X., Torre, I., Freixas, L., Mas, M., Arrizabalaga, A. & Flaquer, C. (2017). Bat boxes in urban non-native forests: a popular practice that should be reconsidered. Urban Ecosystems, 20, 217-225 [lien vers le résumé].

12. Le Roux, M., Redon, M., Archaux, F., Long, J., Vincent, S. & Luque, S. (2017). Conservation planning with spatially explicit models: a case for horseshoe bats in complex mountain landscapes. Landscape Ecology, 1-17 [lien vers le résumé].

13. Froidevaux, J.S.P., Boughey, K.L., Barlow, K.E. & Jones, G. (2017). Factors driving population recovery of the greater horseshoe bat (Rhinolophus ferrumequinum) in the UK: implications for conservation. Biodiversity and Conservation, 1-21 [lien vers l’article].

14. Bartonička, T., Bandouchova, H., Berková, H., Blažek, J., Lučan, R., Horáček, I., Martínková, N., Pikula, J., Řehák, Z. & Zukal, J. (2017). Deeply torpid bats can change position without elevation of body temperature. Journal of Thermal Biology, 63, 119-123 [lien vers l’article].

 

Leave a Reply

*